2H-Benzo[1,4]thiazin-3-one Derivatives Endowed with Antifungal Activity

Fernando Armini Ruela1 Juliana Luisa Teixeira de Andrade1, Nathalia Duarte de Sá, Maria Elisabete Silva Barros and Vera Lucia de Miranda Guarda2

E-mail: vera.guarda@gmail.com

Abstract

Derivados de 2H-benzo[1,4] tiazin-3-ona dotados de actividad antifúngica

The in vitro susceptibility tests with terbinafine and fluconazole, using the CLSI methodology were described to evaluate the 2H-benzo[1,4]thiazin-3-one derivatives. All compounds synthesized were investigated in vitro against Candida spp. Minimum inhibitory concentration (MIC) endpoints were read visually after 48 hours of incubation and the susceptibilities were measured.

Key words: 1,4-2H-benzothiazinones, antifungal activity, candida.

INTRODUCTION

Notwithstanding the good antifungal activities of the agents used to treat Candida infections, especially the azole and non-azole antifungal, candidemia is increase of the prevalence and still cause of death in population immunocompromised (PERES-BOTA, D., et al, 2004; IMWIDTHAYA, P.; POUNGVARIN, N., 2000; IMWIDTHAYA, P.; POUNGVARIN, N., 2000. Therefore, new effective anti-Candida agents are needed to

EXPERIMENTAL

Chemistry

Melting points were determined with a capillary Büchi apparatus and are uncorrected. The purity of the compounds is controlled by thin layer chromatography on silica pre-coated plates Merck 60F254. The spots are revealed under UV light or iodine vapor and the Rf values are measured.

IR spectra were recorded in KBr tablets (2%) with a Perkin-Elmer 1310 spectrophotometer. \(^1\)H and \(^{13}\)C NMR spectra were recorded with a Brucker AC 200 spectrometer in DMSO-d6. Chemicals shifts (\(\delta\)) are expressed in ppm and coupling (J) in Hertz (Hz).

Several steps are necessary to synthesize the 4-methyl-2H-benzo[1,4]-thiazin-3-ones (SAVCHUK, N. P.; TKACHENKO, S. E.; BALAKIN, K. V., 2005; FRINGUELLI, R. et al, 1998; FRINGUELLI, R., SCHIAFELLA, F., VECCHIARELLI, A., 2001)) and 4-buty-2H-benzo[1,4]-thiazin-3-ones (ZIMMERMANN, M., 1958; LOWRIE, H. 1961, GUARDA et al., 2001; GUARDA et al., 2000 and GUARDA, 1998. Synthetic pathway is portrayed in Fig. 1. All compounds has been previously reported, (GUARDA et al., 2000 and GUARDA, 1998), an exception to the 6-bensoilethylamino and 6-ethylamino derivatives, 11b and 12b.
Figure 1 - Synthesis of the 2H-benzo- [1,4]-thiazin-3-ones derivatives

Reagents and conditions: (i) Ethanol, Na₂S.9H₂O, S, reflux; (ii) CICH₂COOH, H₂O, NaOH, reflux; (iii) SnCl₂.2H₂O, HCl, reflux; (vi) DMSO, Methanol, KOH, CH₃I, 50°C; (vii) DMSO, Methanol, KOH, CH₃CH₂CH₂CH₂Br, 50°C; (z) NaOH 5%, Benzoyl chloride; (zi, zii, ziii) Toluene, NaOH, CaCO₃, tetrabutylammonium, [CH₃I, CH₃CH₂I, CH₃CH₂CH₂CH₂Br] reflux; (x) H₂SO₄ 70%, 150°C.

6-Benzylethylamino-4-butyl-2H-benzo[1,4]thiazin-3-one - 11b

To a suspension of 1.18 g (5 mmol) of compound 10 in 20 mL of 5% NaOH, 2 mL of benzoyl chloride were added dropwise. The mixture is vigorously stirred for 10 min. The precipitate is separated, washed with water and purified by recrystallised from 95% ethanol.

C₂₁H₂₄N₂O₂S. Yield 49%. TLC Hexane: ethyl acetate (6 : 4) Rf 0.74. IR (KBr): ν 2930, 2860, 1670, 1640 cm⁻¹. ¹H NMR (CHCl₃-d) δ: 0.93 (t. 3H, CH₃-6. J=6.1 Hz). 1.20 (t. 3H, CH₃-4. J=7.1 Hz) 1.31- 1.42 (m. 2H. CH₂). 1.55- 1.70 (m. 2H. CH₂). 2.85 (s. 2H. CH₂-2). 3.32-3.49 (m. 2H. CH₂-6). 3.96 (t. 2H. CH₂-4). 6.37 (dd. 1H. aromatic H. J=8.2 and 1.7 Hz). 6.45 (d. 1H. aromatic H. J=1.7 Hz). 7.14-7.35 (m. 6H. aromatic H). ¹³C NMR (CHCl₃-d, DEPT)δ:13.72 (CH₃), 13.82(CH₃), 19.99(CH₂), 29.59 (CH₂), 31.28 (CH₂), 38.30 (CH₂), 44.47 (CH₂), 119.15 (C), 122.26 (CH), 125.00 (2CH), 126.40 (2CH), 128.11 (CH) 128.61 (CH), 129.19 (C), 137.02 (C), 140.50 (C), 147.98 (C), 165.70 (CO), 176.18 (CO).
6-Ethylamino-4-butyl-2H-benzo[1,4]thiazin-3-one - 12b

A mixture of 5 mmol of acylated compounds dissolved in toluene (100mL), 1.4 g of potassium carbonate, 7.0 g of sodium hydroxide and 0.16 g of tetrabutylammonium bromide is refluxed under vigorous stirring. The ethyl iodide (7.5 mmol) in toluene (10 mL) is added dropwise. Stirring is continued for 4 hours at the refluxing temperature. After cooling, the mixture is filtered and the filtrate added with water (50 ml; the organic phase is separated, washed with water, dried over anhydrous magnesium sulfate and evaporated.

C_{14}H_{19}N_{2}O_{S}. Yield 73%. TLC Hexane : ethyl acetate (6 : 4) Rf 0.57. IR (KBr): —v. 3360, 2930, 2860, 1670, 1640 cm\(^{-1}\). \(^1\)H NMR (CHCl\(_3\)-d)\(\delta\): 0.89 (t. 3H. CH\(_3\)-6. \(J=6.95\) Hz). 0.98 (t. 3H. CH\(_3\)-4, \(J=7.26\) Hz); 1.32 -1.57 (m. 2H. CH\(_2\)-4); 1.65 - 1.83 (m. 2H. CH\(_2\)-4). 3.31 (s. 2H. CH\(_2\)-2); 3.57 - 3.70 (m. 2H. CH\(_2\)-6). 3.90 (t. 2H. CH\(_2\)-4). 4.33 (t. 1H. NH-6. \(J=6.56\) Hz). 6.84 (dd. 1H. aromatic H. \(J=8.59\) and 1.01 Hz). 6.58 (d. 1H. aromatic H. \(J=1.02\) Hz). 7.14 - 7.34 (m. 6H. aromatic H). \(^{13}\)C NMR (CHCl\(_3\)-d, DEPT) \(\delta\):13.77 (CH\(_3\)), 13.85, (CH\(_3\)). 19.29 (CH\(_2\)), 20.22 (CH\(_2\)), 29.92 (CH\(_2\)), 30.79(CH\(_2\)), 64.84 (CH\(_2\)). 128.31 (CH), 129.53 (CH) 132.79 (CH), 136.12 (C), 139.55 (C), 142.72 (C), 166.72 (CO).

Micology Samples

The MICs of compounds synthesized (3, 4, S, 6, 7, 8, 9, 10, 11a, 11b, 11c,12a, 12b and 12c) were determined by the broth microdilution technique following COMMITTEE CLINICAL LABORATORY STANDARDS – CLSI, (2003), formerly NCCLS, document M27-A2. The compounds were tested against four different strains of Candida. Four reference isolates were included in this study: *Candida albicans* (ATCC 18804), *Candida krusei* (ATCC 6258), *Candida parapsilosis* (ATCC 90018) and *Candida tropicalis* (ATCC 750).

Inoculum

The inocula were performed according to CLSI guideline M27-A2. The strains of *Candida* cultivated in Potato Dextrose Agar were suspended in saline and turbidity standardized to 0.5 McFarland scale, i.e. \(10^6\) CFU.mL\(^{-1}\). This suspension is diluted using RPMI-1640 medium (SIGMA — ALDRICH LOT.:125K83551) supplemented with 2% glucose (MERK 3053029) and buffered to a pH of 7.0 with 0.165 mol/L MOPS (3-[N-
morpholino] propanesulfonic acid) (VETEC LOT.: 0501076), for constituting the final inoculum (103 CFU mL$^{-1}$).

Compounds and Reference antibiotic

Mother solutions of each compound synthesized, fluconazole and terbinafine were prepared in DMSO (Synth, Brazil) at the concentration of 1024 mg.mL$^{-1}$, 256 mg.mL$^{-1}$ and 32 mg. mL$^{-1}$, respectively. Fluconazole (Pfizer, USA) and Terbinafine (Novartis-Pharma, AG, Swiss) were used as reference antifungal agents. A serial dilution were made in RPMI-1640 medium according to a geometric progression of ratio 2, with the aim to obtain ten (10) different concentrations disposed on Flat-bottom microdilution plates.

Interpretive breakpoint

All tests were done in duplicate and the endpoints were read visually after 48 hours of incubation at 28°C. For the compounds synthesized and Terbinafine the MICs considered is the lowest concentration at which fungal growth is completely inhibited, as evidenced by an optically clear well. MIC for fluconazole was read with prominent reduction in growth as 80%.

RESULTS AND DISCUSSION

Studies for antifungal agent determination against Candida spp are very important in last decade. *Candida parapsilosis* emerge like an important pathogen for finger infections, (FIGUEIREDO, V. et al., 2007), and found in blood and catheter in children from a hospital in Brazil (MATSUMOTO, F. et al., 2001). Fluconazole is the main drug against Candida species and terbinafine is used against dermatophytes but it is very effective against C. parapsilosis.

The antifungal activity for the 6-alkylacylamino-4-methyl-2H-benzo[1,4]thiazin-3-ones and 6- alkylacylamino-4-buthyl-2H-benzo[1,4]thiazin-3-ones; against strains of *Candida* was assessed. The results for all compounds synthesized (3, 4, 5, 6, 7, 8, 9, 10, 11a, 11b, 11c, 12a, 12b and 12c) (scheme 1) are collected in the Table 1. Their activity of all compounds is inferior to that of fluconazole and terbinafine, the reference antifungal.
The increase of substituting of N-4 (H, -CH₃, -C₄H₉) in the nitro derivatives (3, 5 and 8), give an increase on the antifungal activity with the augmentation of the group, but the 6-amino derivatives, only the radical butyl give a good one, compounds 4, 6 and 9.

The presence of a benzoyl group in the structure, like in compounds 7 and 10, exhibit the poorest antifungal susceptibility, (MIC > 512 μg/mL). The substitution of the hydrogen of the acylamino group in the position 6 by the radicals’ methyl, ethyl or n-butyl obtaining acylalkylamino derivatives 11a, 11b, 11c exhibit an increase of the activity (MIC = 259 for 11b and 11c and MIC = 128 for 11a against Candida tropicalis). But the desacylation, giving the alkylamino derivatives, 12a, 12b, 12c, didn’t promote de exchange on the activity.
Barufini, A., Pagani, G. Amoretti, L. (1967) demonstrated that the 1,4-benzothiazine nucleus shows some antifungal activity. Fringuelli, F. et al., (1998) were synthesized a series of azole derivatives of 1,4-benzothiazin-3-one and evaluated for the in vitro and in vivo activity against Candida albicans. Only a secondary alcohol and its ether derivative showed very good efficacy against systemic candidiasis in a murine experimental model. No activity in vitro was exhibited in any compounds synthesized in comparison with fluconazole, except a mil one for the compound \{1[(4-chorobenzyl)oxy]-2-(1H-1- imidazolyl)ethyl]-4-methyl-3,4-dihydro-2H-benzothiazin-3-one (MIC = 46μg/mL). The compounds essayed presented the semelhant activity.
CONCLUSIONS

Our compounds showed some activity against Candida spp, but do not have a breakpoint for these drugs. We can observe only susceptibility profile of them and we can make many tests to determine these breakpoints. It is still not possible declare the resistance or susceptibility for any compounds differing those enumerated in CLSI document. It is necessary many additional studies to establish the correct criteria to evaluate this susceptibility.

Acknowledgements - We would like to thank the Federal University of Ouro Preto (UFOP) and a Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support.

REFERENCES

COMMITTEE FOR CLINICAL LABORATORY STANDARDS, CLSI. Determination of MICs described by CLSI. (see. Reference method for broth dilution antifungal susceptibility testing of yeasts) Approved standard. 2ed, M27A2. Wayne, PA, USA. 2003.

